CIS-OLEFINS FROM THE HORNER-WITTIG REACTION; ORIGIN AND OPTIMISATION OF STEREOCHEMISTRY

Antony D. Buss and Stuart Warren* University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW.

Summary: Conditions are described to produce high yields of erythro Horner-Wittig intermediates: stereospecific elimination gives cis-alkenes.

The Horner¹ variant of the Wittig reaction using diphenylphosphinoyl (Ph₂PO) as the anion-stabilising group and butyl-lithium (BuLi) as the base gives erythro intermediates² (2) which can be separated by flash column chromatography³ and crystallisation. Stereospecific elimination⁴ (NaH, DMF) gives pure Z-alkenes, easily separated from the water-soluble by-product [Ph2P02]. This reaction has been applied to the synthesis of single geometrical isomers of dienes,⁵ vinyl ethers,⁶ allylic amines and amides,⁷ and enones.⁸ We describe the selection of conditions to maximise erythro selectivity and the effect of substituents R^1 and R^2 upon this selectivity.

erythro-(2)

In hydrocarbon solvents (table 1) there is little stereoselectivity but a dramatic improvement occurs in ethers with the best results in solvents good at complexing lithium and with added complexing agents Me₂NCH₂CH₂NMe₂ (TMEDA) or 1,3-dimethyl-2-imidazolidinone⁹ (DMI). At about room temperature, even in THF, stereoselectivity is again poor (table 1) but at -78 °C or -100 °C it is good. We use BuL1 in THF at -78 $^{\circ}$ C unless stereoselectivity is poor enough for -100 $^{\circ}$ C to be worthwhile (entries 11 and 12, table 1). One possible structure for the transition state (3) has the largest groups (Ph₂PO and complexed L1) ant1 and R¹ and R² ant1 and gauche.

Table l

Effect	of	Solvent	and	Temperature	on	the	Formation	of	(2,R ² =Ph)
Varıable		Entry		Conditio	n		Rl		erythro:threo
Solvent		1		pentane			Et		55:45
(all at -78	°C)	2		toluene			Et		58:42
		3		ether			Et		60:40
		4		DME			Et		84:16
		5		THF			Et		85:15
		6		THF + TM	IEDA		Et		88:12
		7		THF + DM	II		Et		88:12
Temperature		8		+10 °C			Et		66:34
(all in THF)		9		-78 ^o C			Et		88:15
		10		-100 ^o C			Et		92:8
		11		-78 ^o C			ı-Pr		64:36
		12		-100 ^o C			ı-Pr		83:17

Substituent effects (table 2) can also be explained by this transition state (3). Keeping R^2 =Ph and elongating R^1 from Me to n-Bu (entries 1-4) has little effect on the stereoselectivity. Only when R^1 is branched (entries 5-6) does stereoselectivity fall off, and then only significantly when the branchpoint is the carbon atom next to the anion site. Clearly R^1 must be large if it is to compete with Ph₂PO as the largest group on C-1 in (3). Increasing the size of R^2 (entries 7-11, table 2) similarly reduces stereoselectivity but the effect is smaller. Large aromatic groups (entry 10) give high stereoselectivity and even cyclohexyl does not always give a 50:50 mixture. For the alkene of table 1 (\mathbb{R}^1 =Et, \mathbb{R}^2 =Ph), the Wittig reaction¹⁰ gives 33-79% yield and from 24:76 to 96:4 <u>Z:E</u> selectivity, depending on the conditions. The highest selectivity is obtained with salt-free ylids.¹¹

Table 2

Entry	y R ¹	R ²	Yıeld of <u>erythro</u> (2) ısolated	<u>erythro</u> : <u>threo</u> ^a	Yıeld ^b of <u>Z</u> -Alkene
1	Me	Ph	78%	88:12	71% (4)
2	Et	Ph	73%	85:15	79%
3	n-Pr	Ph	738	85:15	78% (2)
4	n-Bu	Ph	718	84:16	82% (3)
5	Me ₂ CHCH ₂	Ph	65%	80:20	83% (2)
6	Me ₂ CH	Ph	54%	64:36	78%
7	Me	2-MeOC ₆ H ₄	74%	81:19	83% (2)
8	Me	3-MeOC ₆ H ₄	69%	80:20	85% (5)
9	Ме	$4-MeOC_{6}H_{4}$	81%	87:13	75% (6)
10	Me	С	76%	90:10	84% (4)
11	Me	C6H11	69%	79 : 21	79%
12	Re	с _{6^Н11} _д	-	50:50 ^f	-
13	C6H11 ^d	Me	-	50:50 ^f	-

```
a ratio of isolated adducts
b yield of E-alkene by g.l.c. in parenthesis
C R<sup>2</sup>= 3,4-methylenedioxyphenyl
d cyclohexyl
e R<sup>1</sup>=n-Pr, n-Bu, 1-Pr, 1-Bu.
f ratio determined by t.l.c.
```

The elimination step normally occurs stereospecifically with NaH in DMF or KOH in DMSO. If $R^2=Ar$, a trace of <u>E</u>-alkene is sometimes formed (table 2) but when $R^1=Ar$ or other conjugating group^{4,12} stereospecificity can be lost because of equilibration with starting materials. The synthesis of a pure <u>Z</u>-alkene by the Horner-Wittig reaction is most likely to succeed if large or conjugating groups are placed as R^2 and the reaction is carried out as follows:

BuL1 (1.5M solution in hexane) was added from a syringe to a stirred solution of the phosphine oxide in dry THF (freshly distilled from sodium wire) at 0 $^{\circ}$ C. After 30 min the red solution was cooled to -78 $^{\circ}$ C and the neat aldehyde added dropwise at such a rate that the solution stayed at -78 $^{\circ}$ C. The

pale-yellow solution was allowed to warm to room temperature over about 2 h and water was added. The THF was removed under reduced pressure, brine was added, and the solution extracted three times with dichloromethane. The extracts were dried (MgSO₄) and evaporated to dryness. The product was separated by flash column chromatography,³ eluting with ethyl acetate and then acetone. The first diastereoisomer to elute is erythro. Sodium hydride (80% dispersion in oil) was added in one portion to a stirred solution of the erythro adduct in dry DMF. Warming to 50 ^OC for about 1 h produced a white precipitate (Ph_2PO_2Na). The mixture was cooled and the precipitate dissolved in water. The mixture was diluted with brine and extracted with ether. Washing with water, drying (MgSO₄), evaporation, and bulb-to-bulb distillation gave pure Z-alkene.

We thank S.E.R.C. and Glaxo Group Research for grants and Dr Barry Price for many helpful discussions.

References

- L. Horner, H. Hoffmann, H. G. Wippel, and G. Klahre, <u>Chem. Ber.</u>, 1959, 92, 2499; A. J. Bridges and G. H. Whitham, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1974, 142; <u>Perkin Trans.</u> 1, 1975, 2264.
- 2. A. D. Buss and S. Warren, J. Chem. Soc., Chem. Commun., 1981, 100.
- W. C. Still, M. Kahn, and A. Mitra, <u>J. Org.</u> Chem., 1978, 43, 2923.
- 4. A. D. Buss, S. Warren, J. S. Leake, and G. H. Whitham, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, in the press.
- A. H. Davidson and S. Warren, <u>J. Chem. Soc., Perkin Trans.</u> 1, 1976, 639; B. Lythgoe, T. A. Moran, M. E. N. Nambudiry, and S. Ruston, <u>Ibid</u>, 2386; B. Lythgoe, T. A. Moran, J. Tideswell, and P. W. Wright, <u>Ibid</u>, 1978, 590; J. M. Clough and G. Pattenden, Tetrahedron Lett., 1978, 4159; 1979, 5043.
- C. Earnshaw, C. J. Wallis, and S. Warren, <u>J. Chem. Soc.</u>, <u>Perkin Trans.</u> <u>1</u>, 1979, 3099.
- D. J. Cavalla and S. Warren, <u>Tetrahedron Lett.</u>, 1982, 23, 4505; 1983, 24, 295.
- 8. C. A. Cornish and S. Warren, Tetrahedron Lett., 1983, 24, 2603.
- H. Sakurai and F. Kondo, <u>J. Organomet. Chem.</u>, 1976, 117, 149; B. J. Barker, J. Rosenfarb, and J. A. Caruso, Angew. Chem. Int. Ed. Engl., 1979, 18, 503.
- H.-J. Bestmann and O. Klein in Methoden der Organischen Chemie (Houben-Weyl), Thieme, Stuttgart, Vol 5/lb, 1972, p. 388.
- M. Schlosser, G. Müller, and K. F. Christmann, <u>Angew. Chem. Int. Ed. Engl.</u>, 1966, 5, 667.
- J. I. Grayson and S. Warren, <u>J. Chem. Soc.</u>, <u>Perkin Trans.</u> <u>1</u>, 1977, 2263; S. Warren and A. T. Zaslona, <u>Tetrahedron Lett.</u>, 1982, **23**, 4167.

(Received in UK 11 July 1983)

3934